MASTER: Long-Term Stable Routing and Scheduling in Low-Power Wireless Networks

Oliver Harms1,2, Olaf Landsiedel1,2

1Kiel University, Germany
2Chalmers University of Technology, Sweden
Industrial Internet of Things (IIoT)

• Requirements:
 • High reliability
 • Low latency
 • Guaranteed performance
• Central Scheduling
Contributions

• MASTER: centralized router and scheduler
 • Targets IEEE 802.15.4 and TSCH MAC
 • Provides easy extendibility

• Sliding Windows: transmission strategy
 • Enables flexible, stable, and reliable communication

• Extensive testbed evaluation
 • Long-term stable schedule (24 hours)
Outline

1. Motivation

2. Background
 a. Time-Slotted Channel Hopping (TSCH)
 b. Central Scheduling

3. MASTER
 a. Design
 b. Transmission strategies: Sliding Windows

4. Evaluation

5. Conclusion
Time-Slotted Channel Hopping (TSCH)

- TDMA
- FDMA (up to 16 channels)
- Control information
- Recurring Slotframes
Central Scheduling
Outline

1. Motivation
2. Background
 a. Time-Slotted Channel Hopping (TSCH)
 b. Central Scheduling
3. MASTER
 a. Design
 b. Transmission strategies: Sliding Windows
4. Evaluation
5. Conclusion
MASTER: Long-Term Stable Routing and Scheduling in Low-Power Wireless Networks – Oliver Harms
MASTER Overview

- Central Scheduler
- Routing Layer
MASTER building blocks
Routing

• Dijkstra’s shortest path algorithm
• Metric: ETX, \(\text{ETX}^2\), or \(\text{ETX}^3\)
Transmission Strategies

• No retransmissions
• Slot-based retransmissions
• Flow-based retransmissions
 • Sliding Windows
Traditional approaches

• No retransmissions
• Slot-based retransmissions
Sliding Windows

- Flow-based retransmissions
- Slot role: RX, TX, shared (RXTX)
- Number transmissions
 - Fixed
 - ETX-based
 - $n \times \sum ETX_{link}$
 - $n \times \sum [ETX_{link}]$
Sliding Windows in action

1 2 3 4 5 6

A TX RX TX RX TX RX
B RX TX RX TX RX RX
C RX TX RX TX RX RX
D RX RX RX RX RX RX
Sliding Windows in action

A TX TX TX
B RX RX RX TX
C RX RX RX TX TX
D RX RX RX RX

1 2 3 4 5 6

A → B C → D
Scheduling

- R-LPF (Reverse Longest Path First)
- Best-effort
- Non deadline-based
Outline

1. Motivation
2. Background
 a. Time-Slotted Channel Hopping (TSCH)
 b. Central Scheduling
3. Master
 a. Design
 b. Transmission strategies: Sliding Windows
4. Evaluation
5. Conclusion
Evaluation Setup

• Testbed at Kiel University
 • 500 m²
 • 20 nodes
 • Platform: Zolertia Firefly

• Evaluation configuration
 • 6 flows, 2-4 hops
 • 2 hours
 • 1 packet per second
 • 64 bytes payload + headers
MASTER’s Transmission Strategies

- Baseline
- Slot-based
- $1 \times \sum ETX_{\text{link}}$
- $2 \times \sum ETX_{\text{link}}$
- $1 \times \sum ETX_{\text{link}}$
- $2 \times \sum ETX_{\text{link}}$
- $3 \times \sum ETX_{\text{link}}$

PDR [%] vs Latency [slots]
MASTER's Transmission Strategies

- Baseline
- Slot-based
- \(1 \times \sum ETX_{\text{link}}\)
- \(2 \times \sum ETX_{\text{link}}\)
- \(1 \times \sum ETX_{\text{link}}\)
- \(2 \times \sum ETX_{\text{link}}\)
- \(3 \times \sum ETX_{\text{link}}\)
MASTER vs. Orchestra

- **MASTER:** Long-Term Stable Routing and Scheduling in Low-Power Wireless Networks

Graphs:
- **PDR [%]** vs. **Latency [slots]**
- **Duty Cycle [%]**

- Orange: $3 \times \sum[ETX_{\text{link}}]$ at night
- Orange: $3 \times \sum[ETX_{\text{link}}]$ during daytime
- Green: Orchestra at night
- Green: Orchestra during daytime
MASTER’s Long-Term Stability

\[1 \times \sum [ETX_{link}] \]

\[2 \times \sum [ETX_{link}] \]

\[3 \times \sum [ETX_{link}] \]

Time of day [hours]

PDR [%]

Latency [slots]
Conclusion

• MASTER: centralized router and scheduler for TSCH
• Sliding Windows: flexible and stable transmission strategy
• Implementation available at https://github.com/ds-kiel/master-scheduler
• Long-term stable schedules
• Outperforms Orchestra latency wise
Thank you for your attention

https://github.com/ds-kiel/master-scheduler
oha@informatik.uni-kiel.de